469
EMBEDDED
SYSTEMS

Week 14
“VFP In Arm Assembly”

FPU usage in C

m Your C codes automatically use the FPU. Because you compilers are designed for it.

m Soin Keil

— If you compile for a system with a hardware VFP (Vector Floating Point)
coprocessor (in other words an FPU, like in our TM4C123G),

m the ARM compiler makes use of the FPU.

- If you compile for a system without a coprocessor, the compiler implements the
computations in software.

m S0 Keil handles everything for us.

FPU usage in Kell

m Please visit
Chapter 3 Floating-point Support
Describes ARM support for floating-point computations.

It contains the following sections:

3.1 About floating-point support.

3.2 The software floating-point library, fplib.

3.3 Controlling the ARM floating-point environment.

3.4 mathlib double and single-precision floating-point functions.

3.5 IEEE 754 arithmetic.

3.6 Using the Vector Floating-Point (VFP) support libraries.

http://www.keil.com/support/man/docs/armlib/armlib_chr1358938940724.htm

FPU usage in Assembly

m In order to use the FPU in assembly, you will have to do it yourselves. No compiler is
here to help you.

— First you enable it
- Then use the necessary FPU assembly instructions

Enabling the FPU

m The FPU is disabled from reset.
m You must enable it before you can use any floating-point instructions.

m The processor can read from and write to the Coprocessor Access Control (CPAC) register.

- The below example code sequence enables the FPU:

s+ CPACR is located at address OXEOOOEDS8S
LDR.W RO, =0xEOOOEDS8S8

; Read CPACR

LDR R1, [RO]

; Set bits 20-23 to enable CP10 and CP1ll coprocessors
ORR R1, R1, #(O0xF << 20)

+ Write back the modified value to the CPACR
STR R1, [RO]; wait for store to complete

DSB

;reset pipeline now the FPU is enabled

ISB

Coprocessor Access Control (CPAC)
Register (p.195)

Register 91: Coprocessor Access Control (CPAC), offset 0xD88

The CPAC register specifies the access privileges for coprocessors.

Coprocessor Access Control (CPAC)

Base 0xE000.E000
Offset 0xD88

Type RW, reset 0x0000.0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
T T T T T T T T T T T T
reserved CP11 CP10 reserved
[
Type RO RO RO RO RO RO RO RO RW RW RW RW RO RO RO RO
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4] 2 1 0
]]]]]]]]] L]))]]
resemnved
1 1 [
Type RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M4 FPU Assembly Instructions

m Please check the

m On Page 159, you will find the FPU assembly instructions table:

Mnemonic Brief Description See Page
VABS Floating-point absolute 161
VADD Floating-point add 162
VCMP Compare two floating-point registers, or one floating-point 163
register and zero
VCMPE Compare two floating-point registers, or one floating-point 163
register and zero with Invalid Operation check
VCVT Convert between floating-point and integer 167
VCVT Convert between floating-point and fixed point 167
VCVTR Convert between floating-point and integer with rounding 167
VCVTB Converts half-precision value to single-precision 169
VCVTT Converts single-precision register to half-precision 169
VDIV Floating-point divide 171

VEMA Floatina-point fused multinlv accumulate 172

http://ee315.cankaya.edu.tr/uploads/files/CortexM_InstructionSet.pdf

FPU Instruction durations

/.2.3. FPU instruction set

Table 7.1 shows the instruction set of the FPU.

Operation

Absolute
value

Addition

Compare

Convert

Divide

Load

Table 7.1. FRU instruction set

Description

of float

floating point

float with register or zero

float with register or zero

between integer, fixed-point, half-precision and float

Floating-point

multiple doubles

multiple floats

Assembler

VABS.F32

VADD .F32

VCMP.F32

VCMPE.F32

VCVT.F32

VDIV.F32

VLDM. 64

VLDM. 32

Cycles

14

1+2*N. where M is the number of
doubles.

1+MN, where M is the number of floats.

https://developer.arm.com/docs/ddi0439/b/floating-point-unit/fpu-functional-description/fpu-instruction-set

FPU Instruction durations

Convert between integer, fixed-point, half-precision and float VCVT.F32 1
Divide Floating-point VDIV.F32 14
multiple doubles VLDM. 64 ;gf;ll:.;vhere BRI IR
Load multiple floats VLDM. 32 1+MN, where N is the number of floats.
single double VLDR. 64 3
single float VLDR. 32 2
top/bottom half of double to/from core register VMOV 1
immediate/float to float-register VMOV 1
Move :[3‘.:2 l’lgfetiog?setgfu ble to/from two core registers or one float to/from VMOV >
floating-point control/status to core register VMRS 1
core register to floating-point control/status VMSR 1
float VMUL . F32 1
then accumulate float VMLA.F32 3
Multiply then subtract float VMLS . F32 3
then accumulate then negate float VNMLA.F32 3

then subtract then negate float VNMLS.F32 3

ARM M4 FPU Registers

m The FPU provides an extension register file containing 32 single-precision registers.
These can be viewed as:

m Sixteen 64-bit doubleword registers, DO-D15 2‘1) Do

m Thirty-two 32-bit single-word registers, SO-S31 Y
S3
S4
S5
S6
S7

m A combination of registers from the above views

({
J7
((
77
({
J7
((
77

S28
S29
S30
S31

D14

—D15—

How to use them

m Same as fixed-point instructions

Contents

B V{R}SHRN (by immediate)

&) V{R}SRA (by immediate)

B VABA{L} and VABD{L}

B VABS, VNEG, and VSQRT

£l VACGE and VACGT

] VACLE and VACLT

5] VADD, VSUB, and VDIV

£ VAND, VBIC, VEOR, VORN, and V
£l VAND and VORN (immediate)

) VBIC and VORR (immediate)

[VBIF, VBIT, and VBSL

B VCEQ, VCGE, VCGT, VCLE, and Wt
[l VCLE and VCLT

B VCLS, VCLZ, and VCNT

-

-

ARM Software development tools

VADD, VSUB, and VDIV

Floating-point add, subtract, and divide

¥ Syntax
Vop{cond}.F32 {Sd}, Sn, Sm
Vop{cond}.Fe4 {Dd}, Dn, Dm

where:

op
is one of ADD, SUB, or DIV.

cond

is an optional condition code.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0802a/Bcfchhif.html

