- 469 EMBEDDED SYSTEMS

Week 14 "VFP in Arm Assembly"

FPU usage in C

- Your C codes automatically use the FPU. Because you compilers are designed for it.
- So in Keil
 - If you compile for a system with a hardware VFP (Vector Floating Point) coprocessor (in other words an FPU, like in our TM4C123G),
 - the ARM compiler makes use of the FPU.
 - If you compile for a system without a coprocessor, the compiler implements the computations in software.
- So Keil handles everything for us.

FPU usage in Keil

■ Please visit <u>FP support page</u>

Chapter 3 Floating-point Support

Describes ARM support for floating-point computations.

It contains the following sections:

- 3.1 About floating-point support.
- 3.2 The software floating-point library, fplib.
- 3.3 Controlling the ARM floating-point environment.
- 3.4 mathlib double and single-precision floating-point functions.
- 3.5 IEEE 754 arithmetic.
- 3.6 Using the Vector Floating-Point (VFP) support libraries.

FPU usage in Assembly

- In order to use the FPU in assembly, you will have to do it yourselves. No compiler is here to help you.
 - First you enable it
 - Then use the necessary FPU assembly instructions

Enabling the FPU

- The FPU is disabled from reset.
- You must enable it before you can use any floating-point instructions.
- The processor can read from and write to the Coprocessor Access Control (CPAC) register.
 - The below example code sequence enables the FPU:

```
; CPACR is located at address 0xE000ED88

LDR.W R0, =0xE000ED88

; Read CPACR

LDR R1, [R0]

; Set bits 20-23 to enable CP10 and CP11 coprocessors

ORR R1, R1, #(0xF << 20)

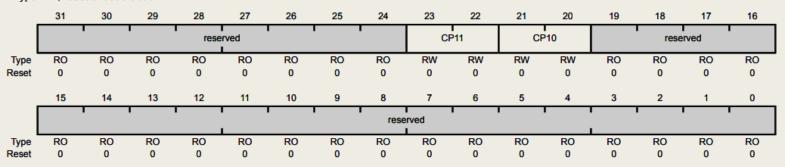
; Write back the modified value to the CPACR

STR R1, [R0]; wait for store to complete

DSB

; reset pipeline now the FPU is enabled

ISB
```


Coprocessor Access Control (CPAC) Register (p.195)

Register 91: Coprocessor Access Control (CPAC), offset 0xD88

The CPAC register specifies the access privileges for coprocessors.

Coprocessor Access Control (CPAC)

Base 0xE000.E000 Offset 0xD88 Type RW, reset 0x0000.0000

M4 FPU Assembly Instructions

- Please check the <u>Arm Cortex M3/M4 instruction set</u>.
- On Page 159, you will find the FPU assembly instructions table:

Mnemonic	Brief Description	See Page
VABS	Floating-point absolute	161
VADD	Floating-point add	162
VCMP	Compare two floating-point registers, or one floating-point register and zero	163
VCMPE	Compare two floating-point registers, or one floating-point register and zero with Invalid Operation check	163
VCVT	Convert between floating-point and integer	167
VCVT	Convert between floating-point and fixed point	167
VCVTR	Convert between floating-point and integer with rounding	167
VCVTB	Converts half-precision value to single-precision	169
VCVTT	Converts single-precision register to half-precision	169
VDIV	Floating-point divide	171
VFMA	Floating-point fused multiply accumulate	172

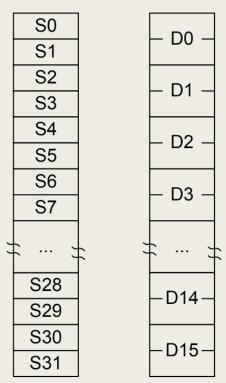
FPU Instruction durations

https://developer.arm.com/docs/ddi0439/b/floating-point-unit/fpu-functional-description/fpu-instruction-set

7.2.3. FPU instruction set

Table 7.1 shows the instruction set of the FPU.

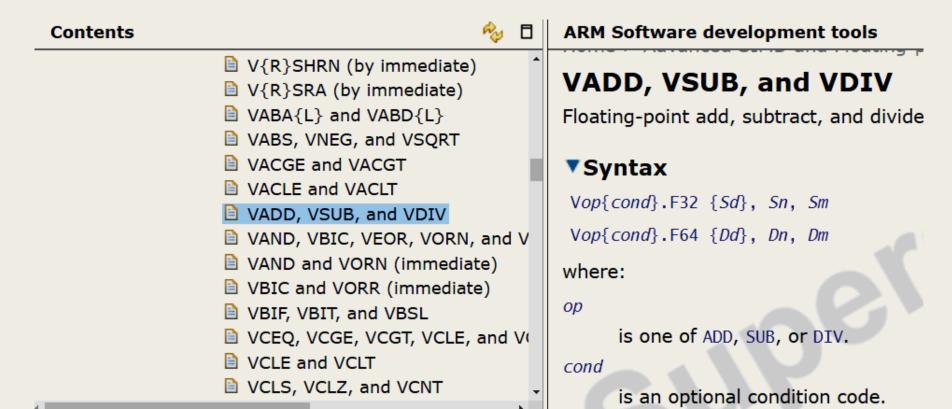
Table 7.1. FPU instruction set


Operation	Description	Assembler	Cycles
Absolute value	of float	VABS.F32	1
Addition	floating point	VADD.F32	1
C	float with register or zero	VCMP.F32	1
Compare	float with register or zero	VCMPE.F32	1
Convert	between integer, fixed-point, half-precision and float	VCVT.F32	1
Divide	Floating-point	VDIV.F32	14
	multiple doubles	VLDM.64	1+2*N, where N is the number of doubles.
Load	multiple floats	VLDM.32	1+N, where N is the number of floats.

FPU Instruction durations

Convert	between integer, fixed-point, half-precision and float	VCVT.F32	1
Divide	Floating-point	VDIV.F32	14
Load	multiple doubles	VLDM.64	1+2*N, where N is the number of doubles.
	multiple floats	VLDM.32	1+N, where N is the number of floats.
	single double	VLDR.64	3
	single float	VLDR.32	2
Move	top/bottom half of double to/from core register	VMOV	1
	immediate/float to float-register	VMOV	1
	two floats/one double to/from two core registers or one float to/from one core register	VMOV	2
	floating-point control/status to core register	VMRS	1
	core register to floating-point control/status	VMSR	1
Multiply	float	VMUL.F32	1
	then accumulate float	VMLA.F32	3
	then subtract float	VMLS.F32	3
	then accumulate then negate float	VNMLA.F32	3
	then subtract then negate float	VNMLS.F32	3

ARM M4 FPU Registers


- The FPU provides an extension register file containing 32 single-precision registers. These can be viewed as:
 - Sixteen 64-bit doubleword registers, D0-D15
 - Thirty-two 32-bit single-word registers, S0-S31
 - A combination of registers from the above views

How to use them

Same as fixed-point instructions

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0802a/Bcfchhif.html

